Coding theory: into the quantum world

Robin Simoens
Universitat Polytècnica de Catalunya \& Ghent University

10 January 2024

SIMBa seminar

1 Classical coding theory

2 Quantum mechanics

3 Quantum coding theory

Classical coding theory

North: 00
East: 01
South: 10
West: 11

Classical coding theory

North: 00
East: 01
South: 10
West: 11
> Does not detect mistakes

Classical coding theory

North: 000
East: 011
South: 101
West: 110

- Detects 1 mistake

Classical coding theory

North:	00000
East:	01101
South:	10110
West:	11011

> Detects 2 mistakes
> Corrects 1 mistake

Classical coding theory

Coding theory, not to be confused zith cryptogrqphy, is q brqnch of informqtion theory thqt qdds redundqnt informqtion such thqt the informqtion is better protected qgqinst possible mistqkes thqt occur during trqnsmission.

Classical coding theory

Figure: Binary symmetric channel

Classical coding theory

Definition

The distance between two codewords is the number of positions in which they differ.

Classical coding theory

Definition

The distance between two codewords is the number of positions in which they differ.

> A code with minimum distance d can detect $d-1$ errors.

- A code with minimum distance d can correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

Classical coding theory

Repetition code:

Classical coding theory

Repetition code:

> 2 codewords

Classical coding theory

Repetition code:

> 2 codewords
$>$ length $n=9$

Classical coding theory

Repetition code:

> 2 codewords
> length $n=9$
$>$ minimum distance $d=9$

Classical coding theory

Repetition code:

> 2 codewords
> length $n=9$
> Detects 8 errors

- Corrects 4 errors
> minimum distance $d=9$

Classical coding theory

Problem (Main problem of coding theory)

Given

> length n
> minimum distance d
what is the maximum number of codewords that you can construct?

Classical coding theory

$A_{2}(n, d)$		d									
		1	2	3	4	5	6	7	8	9	10
n	1	2	1	1	1	1	1	1	1	1	1
	2	4	2	1	1	1	1	1	1	/	1
	3	8	4	2	1	1	1	1	1	1	1
	4	16	8	2	2	1	1	1	1	/	1
	5	32	16	4	2	2	1	1	1	1	1
	6	64	32	8	4	2	2	1	1	1	1
	7	128	64	16	8	2	2	2	1	1	1
	8	256	128	20	16	4	2	2	2	1	1
	9	512	256	40	20	6	4	2	2	2	1
	10	1024	512	72	40	12	6	2	2	2	2

Classical coding theory

Definition

A linear code is a subspace of \mathbb{F}_{2}^{n}.

Classical coding theory

Definition

A linear code is a subspace of \mathbb{F}_{2}^{n}.
Generator matrix:

$$
G=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Code: 00000 11100 10011 01111

Classical coding theory

Definition

A linear code is a subspace of \mathbb{F}_{2}^{n}.
Generator matrix:
Code: 00000 11100 10011 01111
Parity check matrix:

$$
H=\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Classical coding theory

Definition

A linear code is a subspace of \mathbb{F}_{2}^{n}.
Generator matrix:

Code: 00000 11100 10011 01111
Parity check matrix:

$$
H=\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Error syndrome: $c \cdot H^{T}$
$c \cdot H^{T}=0 \Leftrightarrow c$ is a codeword

Moore's law

Moores law

Quantum mechanics

1 Classical coding theory

2 Quantum mechanics

3 Quantum coding theory

Quantum mechanics

$13 / 28$

Quantum mechanics

Quantum mechanics

$13 / 28$

Quantum mechanics

$13 / 28$

Quantum mechanics

Quantum mechanics

Quantum mechanics

Quantum mechanics

Anyone who is not shocked by quantum theory has not understood it.

Niels Bohr

Quantum coding theory

Quantum coding theory

$16 / 28$

Quantum coding theory

Qubits:

$$
\begin{gathered}
|0\rangle:=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle:=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
\end{gathered}
$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$

Quantum coding theory

Bit

Qubit

Quantum coding theory

Axioms of quantum mechanics
> Axiom 1: A physical system is described by a unit vector in $\left(\mathbb{C}^{2}\right)^{\otimes n}$.
> Axiom 2: An evolution on a closed system corresponds to a unitary operator acting on that vector.

- Axiom 3: A measurement causes a state to collapse and is probabilistic in nature.

Quantum coding theory

Definition

A quantum code is a subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

Quantum coding theory

Definition
A quantum code is a subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

$$
|0\rangle \otimes|1\rangle \otimes|0\rangle \otimes|0\rangle
$$

Quantum coding theory

Definition

A quantum code is a subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

$$
\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \otimes|1\rangle
$$

Quantum coding theory

Problems:
> Measurement destroys information

Quantum coding theory

Problems:
> Measurement destroys information Solution: only measure syndromes.

Quantum coding theory

Problems:
> Measurement destroys information Solution: only measure syndromes.
> Errors are continuous

Quantum coding theory

Problems:
> Measurement destroys information Solution: only measure syndromes.
> Errors are continuous
Solution: discretisation of errors.

Quantum coding theory

Theorem (Discretisation of errors)

It suffices to correct the following errors:
> Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

These errors are elements of the the Pauli group.

Quantum coding theory

Theorem (Discretisation of errors)
It suffices to correct the following errors:
> Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

- Phase flips:

$$
|0\rangle \mapsto|0\rangle \text { and }|1\rangle \mapsto-|1\rangle \text {, i.e. }\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]
$$

These errors are elements of the the Pauli group.

Quantum coding theory

Theorem (Discretisation of errors)
It suffices to correct the following errors:
> Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

> Phase flips:

$$
|0\rangle \mapsto|0\rangle \text { and }|1\rangle \mapsto-|1\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]
$$

- Both a bit flip and a phase flip.

These errors are elements of the the Pauli group.

Quantum coding theory

Repetition code:

$$
\begin{aligned}
|0\rangle & \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
|1\rangle & \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle
\end{aligned}
$$

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

No cloning

$$
\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \nvdash\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \otimes\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \otimes\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

> code of dimension 2

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

> code of dimension 2
> length $n=3$

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

> code of dimension 2
> length $n=3$
$>$ minimum distance $d=1(\neq 3)$

Quantum coding theory

Repetition code:

$$
\begin{aligned}
&|0\rangle \mapsto|0\rangle \otimes|0\rangle \otimes|0\rangle \\
&|1\rangle \mapsto|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& {\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto \alpha|0\rangle \otimes|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle \otimes|1\rangle }
\end{aligned}
$$

> code of dimension 2
> length $n=3$

- Detects 2 flip errors
> Detects 0 phase errors
$>$ minimum distance $d=1(\neq 3)$

Quantum coding theory

Problem (Main problem of quantum coding theory)

Given

> length n
> minimum distance d
what is the maximum dimension of a quantum code?

Quantum coding theory

Definition (Stabiliser code)

$$
\left.\mathcal{C}=\left\{|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}|E| \psi\right\rangle=|\psi\rangle \text { for all } E \in S\right\} \quad \text { where } S \leqslant \mathcal{P}_{n}
$$

$$
S=\left\langle c X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r}
$$

$$
\mathcal{G}=\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{r 1} & \cdots & a_{r n} & b_{r 1} & \cdots & b_{r n}
\end{array}\right)
$$

Quantum coding theory

CSS construction:

$$
\mathcal{G}=\left(\begin{array}{c|c}
G & O \\
\hline O & H
\end{array}\right)
$$

where G and H are the generator matrix and parity check matrix of a classical linear code.

GHENT

Classical
Quantum
$27 / 28$

Summary

Classical
 Intuitive
 Quantum
 Weird

Classical
Intuitive
Discrete
Quantum
Weird
Continuous

Summary

Classical
Intuitive
Discrete
Mostly transmission Mostly storage

Summary

Classical
Intuitive
Discrete
Mostly transmission
Well-developed

Quantum
Weird
Continuous
Mostly storage
Still a long way to go

Summary

Classical
Intuitive
Discrete
Mostly transmission
Well-developed

Quantum

Weird
Continuous
Mostly storage
Still a long way to go

Same fundamental principles:
Adding redundant information Measuring syndromes

Thank you for listening!

Tensor product

$$
\begin{aligned}
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \otimes\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] } & =\left[\begin{array}{lll}
a_{11}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \quad a_{12}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
a_{21}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \quad a_{22}\left[\begin{array}{lll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right]
\end{aligned}
$$

