
1/28

Coding theory:
into the quantum world

Robin Simoens
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Classical coding theory
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Classical coding theory
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East: 01
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West: 11

➤ Does not detect mistakes
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Classical coding theory

North: 000
East: 011
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➤ Detects 1 mistake
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Classical coding theory

North: 00000
East: 01101
South: 10110
West: 11011

➤ Detects 2 mistakes

➤ Corrects 1 mistake
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Classical coding theory

Coding theory, not to be confused zith cryptogrqphy, is q brqnch of
informqtion theory thqt qdds redundqnt informqtion such thqt the
informqtion is better protected qgqinst possible mistqkes thqt occur
during trqnsmission.
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Classical coding theory

Figure: Binary symmetric channel
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Classical coding theory

Definition

The distance between two codewords is the number of positions in
which they differ.

➤ A code with minimum distance d can detect d− 1 errors.
➤ A code with minimum distance d can correct

⌊
d−1
2

⌋
errors.
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Classical coding theory

Repetition code:

0 7→ 000000000︸ ︷︷ ︸
9

1 7→ 111111111︸ ︷︷ ︸
9

➤ 2 codewords

➤ length n = 9

➤ minimum distance d = 9

➤ Detects 8 errors

➤ Corrects 4 errors
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Classical coding theory

Problem (Main problem of coding theory)

Given

➤ length n

➤ minimum distance d

what is the maximum number of codewords that you can construct?
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Classical coding theory

A2(n, d)
d

1 2 3 4 5 6 7 8 9 10

n

1 2 / / / / / / / / /
2 4 2 / / / / / / / /
3 8 4 2 / / / / / / /
4 16 8 2 2 / / / / / /
5 32 16 4 2 2 / / / / /
6 64 32 8 4 2 2 / / / /
7 128 64 16 8 2 2 2 / / /
8 256 128 20 16 4 2 2 2 / /
9 512 256 40 20 6 4 2 2 2 /
10 1024 512 72 40 12 6 2 2 2 2



10/28

Classical coding theory

Definition

A linear code is a subspace of Fn
2 .

Generator matrix:

G =

(
1 1 1 0 0
1 0 0 1 1

) Code: 00000
11100
10011
01111

Parity check matrix:

H =

1 1 0 1 0
0 1 1 0 0
0 0 0 1 1


Error syndrome: c ·HT

c ·HT = 0 ⇔ c is a
codeword
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Moore’s law
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Quantum mechanics

1 Classical coding theory

2 Quantum mechanics

3 Quantum coding theory
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Quantum mechanics

Anyone who is not shocked by quantum theory has not un-
derstood it.

Niels Bohr
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Quantum coding theory

Qubits:

|0⟩ :=
[
1
0

]
|1⟩ :=

[
0
1

]

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]

where α, β ∈ C and |α|2 + |β|2 = 1
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Quantum coding theory
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Quantum coding theory

Axioms of quantum mechanics

➤ Axiom 1: A physical system is described by a unit vector in(
C2

)⊗n.

➤ Axiom 2: An evolution on a closed system corresponds to a
unitary operator acting on that vector.

➤ Axiom 3: A measurement causes a state to collapse and is
probabilistic in nature.

➤ …
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Quantum coding theory

Definition

A quantum code is a subspace of
(
C2

)⊗n.

· · ·
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Quantum coding theory

Definition

A quantum code is a subspace of
(
C2

)⊗n.

· · ·

|0⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |0⟩
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Quantum coding theory

Definition

A quantum code is a subspace of
(
C2

)⊗n.

· · ·

1√
2
|0⟩ ⊗ |0⟩+ 1√

2
|1⟩ ⊗ |1⟩
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Quantum coding theory

Problems:

➤ Measurement destroys information

Solution: only measure syndromes.

➤ Errors are continuous
Solution: discretisation of errors.
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Quantum coding theory

Theorem (Discretisation of errors)

It suffices to correct the following errors:

➤ Bit flips:

|0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩ , i.e.
[
α
β

]
7→

[
β
α

]

➤ Phase flips:

|0⟩ 7→ |0⟩ and |1⟩ 7→ − |1⟩ , i.e.
[
α
β

]
7→

[
α
−β

]
➤ Both a bit flip and a phase flip.

These errors are elements of the the Pauli group.
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Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

No cloning [
α
β

]
̸7→

[
α
β

]
⊗
[
α
β

]
⊗

[
α
β

]

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



23/28

Quantum coding theory

Repetition code:

|0⟩ 7→ |0⟩ ⊗ |0⟩ ⊗ |0⟩
|1⟩ 7→ |1⟩ ⊗ |1⟩ ⊗ |1⟩

[
α
β

]
7→ α |0⟩ ⊗ |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ ⊗ |1⟩

➤ code of dimension 2

➤ length n = 3

➤ minimum distance d = 1 ( ̸= 3)

➤ Detects 2 flip errors

➤ Detects 0 phase errors



24/28

Quantum coding theory

Problem (Main problem of quantum coding theory)

Given

➤ length n

➤ minimum distance d

what is the maximum dimension of a quantum code?
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Quantum coding theory

Definition (Stabiliser code)

C = {|ψ⟩ ∈
(
C2

)⊗n | E |ψ⟩ = |ψ⟩ for all E ∈ S} where S ⩽ Pn

S =
〈
cX a⃗iZ b⃗i

〉
1≤i≤r

G =

a11 · · · a1n b11 · · · b1n
...

...
...

...
ar1 · · · arn br1 · · · brn


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Quantum coding theory

CSS construction:

G =

(
G O

O H

)

where G and H are the generator matrix and parity check matrix of
a classical linear code.
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Summary

Classical Quantum

Intuitive Weird
Discrete Continuous
Mostly transmission Mostly storage
Well-developed Still a long way to go

Same fundamental principles:

Adding redundant information
Measuring syndromes
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Thank you for listening!
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Tensor product

[
a11 a12
a21 a22

]
⊗

[
b11 b12
b21 b22

]
=

a11
[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]
a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]


=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


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