

Coding theory: into the quantum world

Robin Simoens

Universitat Polytècnica de Catalunya & Ghent University

10 January 2024

SIMBa seminar

2 Quantum mechanics

3 Quantum coding theory

North	00
East:	01
South:	10
West:	11

North	00
East:	01
South:	10
West:	11

North	000
East:	011
South:	101
West:	110

North	00000
East:	01101
South:	10110
West:	11011

Corrects 1 mistake

Coding theory, not to be confused zith cryptography, is a branch of information theory that adds redundant information such that the information is better protected against possible mistakes that occur during transmission.

Figure: Binary symmetric channel

Definition

The **distance** between two codewords is the number of positions in which they differ.

Definition

The **distance** between two codewords is the number of positions in which they differ.

➤ A code with minimum distance d can detect d - 1 errors.
 ➤ A code with minimum distance d can correct | d-1/2 | errors.

6/28

Repetition code:

Repetition code:

Repetition code:

 \blacktriangleright 2 codewords

 \blacktriangleright length n = 9

Repetition code:

 \blacktriangleright 2 codewords

 \blacktriangleright length n = 9

> minimum distance d = 9

Repetition code:

 \blacktriangleright 2 codewords

- > length n = 9
- > minimum distance d = 9

Problem (Main problem of coding theory)

Given

➤ minimum distance d

what is the maximum number of codewords that you can construct?

$A_2(n,d)$		d									
		1	2	3	4	5	6	7	8	9	10
	1	2	/	/	/	/	/	/	/	/	/
	2	4	2	/	/	/	/	/	/	/	/
	3	8	4	2	/	/	/	/	/	/	/
~	4	16	8	2	2	/	/	/	/	/	/
	5	32	16	4	2	2	/	/	/	/	/
	6	64	32	8	4	2	2	/	/	/	/
	7	128	64	16	8	2	2	2	/	/	/
	8	256	128	20	16	4	2	2	2	/	/
	9	512	256	40	20	6	4	2	2	2	/
	10	1024	512	72	40	12	6	2	2	2	2

A **linear code** is a subspace of \mathbb{F}_2^n .

A **linear code** is a subspace of \mathbb{F}_2^n .

Generator matrix:

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Code:	00000
	11100
	10011
	01111

A **linear code** is a subspace of \mathbb{F}_2^n .

Generator matrix:

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Parity check matrix:

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Code:	00000
	11100
	10011
	01111

A **linear code** is a subspace of \mathbb{F}_2^n .

Generator matrix:

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Parity check matrix:

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Code: 00000 11100 10011 01111

 $\label{eq:constraint} \begin{array}{l} \mbox{Error syndrome: } c \cdot H^T \\ c \cdot H^T = 0 \Leftrightarrow c \mbox{ is a} \\ \mbox{codeword} \end{array}$

Moore's law

11/28

1 Classical coding theory

2 Quantum mechanics

3 Quantum coding theory

12/28

Anyone who is not shocked by quantum theory has not understood it.

Niels Bohr

16/28

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$

Axioms of quantum mechanics

- ➤ Axiom 1: A physical system is described by a unit vector in (C²)^{⊗n}.
- Axiom 2: An evolution on a closed system corresponds to a unitary operator acting on that vector.
- Axiom 3: A measurement causes a state to collapse and is probabilistic in nature.

≻ ..

A quantum code is a subspace of $\left(\mathbb{C}^2\right)^{\otimes n}$.

Definition

A quantum code is a subspace of $(\mathbb{C}^2)^{\otimes n}$.

 $|0
angle\otimes|1
angle\otimes|0
angle\otimes|0
angle$

Definition

A quantum code is a subspace of $(\mathbb{C}^2)^{\otimes n}$.

$$\frac{1}{\sqrt{2}}\left|0\right\rangle \otimes \left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle \otimes \left|1\right\rangle$$

Measurement destroys information

Measurement destroys information Solution: only measure syndromes.

- Measurement destroys information Solution: only measure syndromes.
- Errors are continuous

Measurement destroys information Solution: only measure syndromes.

Errors are continuous

Solution: discretisation of errors.

Theorem (Discretisation of errors)

It suffices to correct the following errors:

➤ Bit flips:

$$|0\rangle \mapsto |1\rangle$$
 and $|1\rangle \mapsto |0\rangle$, i.e. $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$

These errors are elements of the the **Pauli group**.

Theorem (Discretisation of errors)

It suffices to correct the following errors:

➤ Bit flips:

$$|0\rangle \mapsto |1\rangle$$
 and $|1\rangle \mapsto |0\rangle$, i.e. $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$

> Phase flips:

$$|0\rangle \mapsto |0\rangle \text{ and } |1\rangle \mapsto -|1\rangle, \text{ i.e. } \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$$

These errors are elements of the the **Pauli group**.

Theorem (Discretisation of errors)

It suffices to correct the following errors:

> Bit flips:

$$|0\rangle \mapsto |1\rangle \text{ and } |1\rangle \mapsto |0\rangle, \text{ i.e. } \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

Phase flips:

$$|0\rangle \mapsto |0\rangle$$
 and $|1\rangle \mapsto -|1\rangle$, *i.e.* $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$

Both a bit flip and a phase flip.

These errors are elements of the the **Pauli group**.

 $\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$

$$\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \left| 0 \right\rangle \otimes \left| 0 \right\rangle \otimes \left| 0 \right\rangle + \beta \left| 1 \right\rangle \otimes \left| 1 \right\rangle \otimes \left| 1 \right\rangle$$

Repetition code:

$$\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \ket{0} \otimes \ket{0} \otimes \ket{0} + \beta \ket{1} \otimes \ket{1} \otimes \ket{1}$$

No cloning

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \not \mapsto \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \otimes \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \otimes \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \ket{0} \otimes \ket{0} \otimes \ket{0} + \beta \ket{1} \otimes \ket{1} \otimes \ket{1}$$

 \blacktriangleright code of dimension 2

 $\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \ket{0} \otimes \ket{0} \otimes \ket{0} + \beta \ket{1} \otimes \ket{1} \otimes \ket{1}$$

 \blacktriangleright code of dimension 2

> length n = 3

 $\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \ket{0} \otimes \ket{0} \otimes \ket{0} + \beta \ket{1} \otimes \ket{1} \otimes \ket{1}$$

 \blacktriangleright code of dimension 2

 \blacktriangleright length n = 3

> minimum distance $d = 1 \ (\neq 3)$

 $\begin{array}{l} |0\rangle \mapsto |0\rangle \otimes |0\rangle \otimes |0\rangle \\ |1\rangle \mapsto |1\rangle \otimes |1\rangle \otimes |1\rangle \end{array}$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \mapsto \alpha \ket{0} \otimes \ket{0} \otimes \ket{0} + \beta \ket{1} \otimes \ket{1} \otimes \ket{1}$$

- code of dimension 2
- \blacktriangleright length n = 3

> minimum distance $d = 1 \ (\neq 3)$

Detects 2 flip errorsDetects 0 phase errors

Problem (Main problem of quantum coding theory)

Given

what is the maximum dimension of a quantum code?

Definition (Stabiliser code)

$$\mathcal{C} = \{ |\psi\rangle \in \left(\mathbb{C}^2\right)^{\otimes n} \mid E \left|\psi\right\rangle = |\psi\rangle \text{ for all } E \in S \} \text{ where } S \leqslant \mathcal{P}_n$$

$$S = \left\langle c X^{\vec{a}_i} Z^{\vec{b}_i} \right\rangle_{1 \le i \le r}$$

$$\mathcal{G} = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{r1} & \cdots & a_{rn} & b_{r1} & \cdots & b_{rn} \end{pmatrix}$$

CSS construction:

$$\mathcal{G} = \begin{pmatrix} G & O \\ \hline O & H \end{pmatrix}$$

where G and H are the generator matrix and parity check matrix of a classical linear code.

Classical

Quantum

27/28

Classical Intuitive **Quantum** Weird

27/28

Classical Intuitive Discrete **Quantum** Weird Continuous

ClassicalQuantumIntuitiveWeirdDiscreteContinuousMostly transmissionMostly storage

Classical Intuitive Discrete Mostly transmission Well-developed

Quantum

Weird Continuous Mostly storage Still a long way to go

Classical Quantum Intuitive Discrete Mostly transmission Well-developed

Weird Continuous Mostly storage Still a long way to go

Same fundamental principles:

Adding redundant information Measuring syndromes

Thank you for listening!

Tensor product

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} & a_{12} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \\ a_{21} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} & a_{22} \begin{bmatrix} b_{11} & b_{12} \\ b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix}$$